

Emerging Rodent Pathogens and Their Role in the Rodent Sentinel Program

Mandy Horn, M.S.
Harlan Laboratories, Inc
D5 AALAS – Indianapolis, IN
May 10, 2012

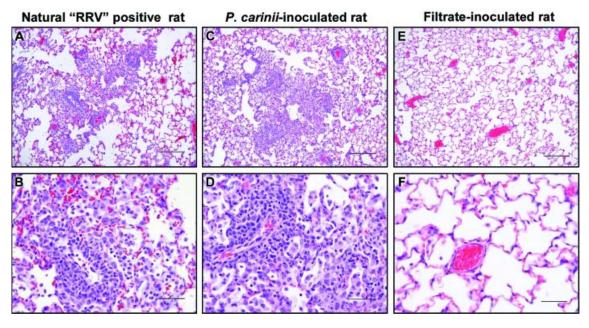
Outline

- Introduction
- Novel organisms
- Sample testing size
- Sentinel Type
- What organisms to include
- Testing Methodologies
- Biosecurity
- Conclusion

Introduction

- A health monitoring program should be a dynamic entity of any laboratory animal program. Health status can directly impact research results and should be protected through routine monitoring of animals within the colony.
- The design should include appropriate sample size and organisms monitored, as well as reliable testing methodology.
- Procedures should be in place to reduce introduction of pathogens, including appropriate biosecurity measures and approval of animal sources.
- Formulas exist to calculate proper sample size based on known organism prevalence and colony size, but what organisms should be monitored? How does one account for emerging pathogens?

Novel organisms – Murine Norovirus⁵


- Murine Norovirus
 - Discovered in 2003 in immunocompromised mouse colony; clinical symptoms elicited in immunodeficient mice
 - Immunocompetent mice can be infected but may not display clinical symptoms

Novel organisms – *Pneumocystis carinii*⁶

- Pneumocystis carinii
 - Determined in 2010 as causative agent of idiopathic lung lesions in rats

 Example of known disease with no causative agent identified; now easily monitored within colonies

Livingston et al. 2011

Sample testing size

- ILAR formula (1976)
 - Statistical analysis
 - Infectivity of organism
 - Production and husbandry procedures

- Number of animals sampled depends on nature of infection and husbandry and caging
- As prevalence of infection decreases, sample size required to detect the infection increases

Sample testing size

Table 1 Calculation of the number of animals to be monitored

Diseases with an infection rate of 50% or more (Sendai, MHV) require far fewer animals to detect their presence than diseases with low infection rates.

Assumptions

- 1. Both sexes are infected at the same rate
- 2. Population size > 100 animals
- 3. Random sampling
- 4. Random distribution of infection

The sample size is calculated from the following formula:

$$\frac{\log 0.05}{\log N}$$
 = Sample size

N = percentage of non-infected animals

0.05 = 95% confidence level

Relation of sample size to prevalence rate

Suspected prevalence rate (%)	Sample sizes at different confidence levels		
	95%	99%	99.9%
10	29	44	66
20	14	21	31
30	10	13	20
40	6	10	14
50	5	7	10

Example: 10 animals should be monitored to detect at least one positive animal if the suspected prevalence rate of an infection is 30% (confidence level: 95%)

Nicklas et al. 2002

7

Sentinel Type

- Contact Sentinels
 - Most reliable
 - Susceptibility to organisms can be strain specific
- Dirty Bedding Sentinels
 - Susceptibility to organisms can be strain specific
 - Many organisms do not transmit well via soiled bedding
- Colony resident
 - Randomly selected
 - Represent true susceptibility of population (if immunocompetent)

Other sample types

- Tissue samples
- Blood samples
- Fecal samples
- Environmental samples

What organisms to include

FELASA recommendations

- Vendor health reports
- Organisms within the research scope
 - May desire animals negative for organism being studied

Testing Methodologies - Serology

Pros

- Inexpensive
- Easy to collect blood sample
- Can assay multiple organisms, multiple antigens
- Highly sensitive and specific

Cons

- Can take several weeks for seroconversion
- Does not indicate if infection is active or historical
- False positives can occur with older animals

Testing Methodologies - PCR

Pros

- Highly sensitive and specific
- Multiplex approach possible
- Detect active infection or environmental contamination
- Use multiple sample types

- High cost
- Short duration of shedding may necessitate frequent sampling
- DNA may be degraded
- Susceptible to contamination

12

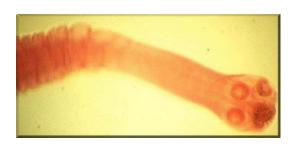
Testing Methodologies - Microbiology

Pros

- Relatively low cost
- Tests for wide range of organisms
- Detects active infection

Cons

- Susceptible to contamination
- Requires careful sample handling
- Fastidious organisms can be difficult to detect
- Variable characteristics of some organisms



Testing Methodologies - Parasitology

Pros

- Relatively low cost
- Tests for wide range of organisms
- Detects active infection

Cons

- Relatively insensitive
- Variable shedding of some organisms
- Dependent on skill of technician

Biosecurity

- Correlates to success of health monitoring program
 - Entry procedures
 - Sterilization of supplies
 - Cage changing
 - Animal procedures
- Proper review of animal sources entering facility
 - Quarantine if needed

 Implement biosecurity auditing program within one's facility to ensure compliance and health of animals

Conclusion

 Proper sampling size, sentinel selection, and test methodology lead to protection of research results by reducing variation due to health status

- Novel organisms may be more quickly discovered and therefore controlled or eradicated through proper health monitoring program implementation
- Health monitoring is an integral component of proper animal research and measures should be taken to ensure accuracy and integrity of the health monitoring program.

Harlan Laboratories

16

Selected References

Besselsen DG, Franklin CL, Livingston RS, Riley LK. (2008) Lurking in the shadows: Emerging rodent infectious diseases. *The Journal of the Institute of Laboratory Animal Research*. 49(3):277-290.

Clifford CB and Watson J. (2008) Old Enemies, Still with Us after All These Years. ILAR Journal, 49(3): 291-302.

ILAR (1976) Long term holding of laboratory rodents. ILAR News. 19:L1-L25

Jacoby RO and Lindsey JR. (1997) Health care for research animals is essential and affordable. *The FASEB Journal*. 11:609-614.

Karst SM, Wobus CE, Lay M, Davidson J, Virgin IV HW. (2006) STAT1-dependent innate immunity to a Norwalk-like virus . *Science*, 299. 1575-1578.

Livingston RS, Besch-Williford CL, Myles MH, Franklin CL., Crim MJ, Riley LK. (2011) Pneumocystis carinii infection causes lung lesions historically attributed to rat respiratory virus. *Comparative Medicine*. 61:45-52.

National Research Council. (1991) Infectious Disease of Mice and Rats. Washington, D.C.: National Academy Press.

Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, and Illgen-Wilcke B. (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. *Laboratory Animals*. 36:20-42.

Nicklas W, Deeny A, Diercks P, Gobbi A, Illgen-Wilcke B, and Seidelin M. (2010) FELASA guidelines for the accreditation of health monitoring programs and testing laboratories involved in health monitoring. *Lab Animal*. 10:16-24.

Nicklas W. (2008) Internal harmonization of health monitoring. *The Journal of the Institute of Laboratory Animal Research*. 49(3):338-346.

Peterson N. (2008) From bench to cageside: Risk assessment for rodent pathogen contamination of cells and biologics. *The Journal of the Institute of Laboratory Animal Research*. 49(3):310-315.

Pritchett-Corning KR, Cosention J, Clifford CB. (2009) Contemporary Prevalence of Infectious agents in laboratory mice and rats. *Laboratory Animals*, 43. 165-173.

Shek WR, and Gaertner DJ. Microbiological quality control for laboratory rodents and lagamorphs. In: Fox, J. G., Anderson, L. C., Lowe FM, et al. eds. *Laboratory Animal Medicine*. 2nd edn. San Diego: Academic Press, 2002.

Weisbroth SH, Peters R, Riley LK, and Shek W. (1998) Microbiological assessment of laboratory rats and mice. *ILAR Journal*. 39:272-290.

Mandy Horn, M.S.
Harlan Laboratories
8520 Allison Point Boulevard, Suite 400
Indianapolis, IN 46052
mhorn@harlan.com
1-800-473-6423 x19509

Harlan Laboratories

Contract Research Services

Research Models and Services