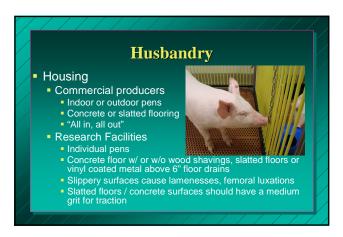
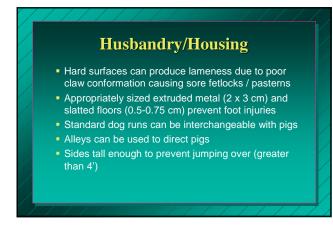

## Occupational Health and Safety - Allergies - Rare, but reported in farm workers - Contact dermatitis - Injuries - Swine are inquisitive and can be aggressive - Will root and push, leading to falls - Bite or nibble on clothing / hands if given opportunity - Can be very large; lifting/moving requires proper safety precautions (lift with legs, not back, etc)


## Zoonotic Diseases Swine Influenza A (H1N1, H3N2) Acute respiratory infection with fever, chills, muscle aches, pharyngitis, cough Weight loss and poor growth Generally has low mortality in pigs CDC: US - 30% pigs have H1N1 Ab's; 50% of North-Cent Am pigs H1N1 Ab+ Swine vaccination: MaxiVac (H1N1) and Maxivac Excell 3 (H1N1 and H3N2)


## Zoonotic Diseases Swine Flu (H1N1/09) 2009: 1.6 Mill cases in 54 countries & 44,000 deaths in US H1N1/09 subtype (human, avian, swine strains) Originated in Veracruz, Mexico May 2009 Natural infection: Human to swine transmission in Canadian herd June 2009: WHO Pandemic (1st in 41 yrs) Transmission: contact w/ viral particles through coughing, sneezing, touching June 2010: vaccine developed by Novartis, GSK & Sanofi-Aventis EU study: swine trans for 4 cycles of naïve pigs w/ peak shedding at 3-6 days













### Housing/Behavioral

- Social animals, prefer to be pair or group housed
- Place food / water end of pen; dunging pattern at opposite end
- Use automatic water readily
- Rooting behaviors satisfied with wood shavings, plastic or bowling balls



### Housing/Behavioral

- Very destructive: sturdy materials for pens
- Dominance established by fighting, especially in large boards
- Animals should be of equal size when housed together
- Chains, hoses, etc. for chewing

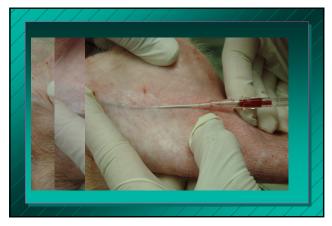
### Nutrition

- Food provided in feed troughs attached to pens or in pans
- Agricultural production diets formulated for rapid growth and may have unwanted additives such as antibiotics
- Require 100-300 kcal/kg/day
- Feed about 1.5%-3% body weight / day
- Water ad lib; require 0.2L/kg/day

### **Handling**

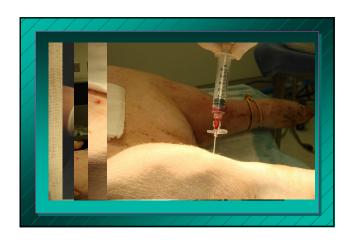
- Pigs respond to positive reinforcement, gentle handling / movement rather than forceful, aggressive handling
- Pigs will follow each other
  - Alleyways / hurdle boards help guide/move animals
  - Large production facilities designed with this in

### **Handling**


- Snares (commercial, rope, chain)
- Used rarely for difficult to handle or large domestic pigs
- Panepinto sling
  - Monitoring conscious pigs / minor procedures (blood collection, stomach tubing, physical exam)
     Sling restraint in untrained pigs can be stressful
- Can train through socialization and handling Rough handling increases corticosteroid concentrations
- Some pigs (minipigs) docile, need little training
- Prefer sweets / pediatric oral medications
- Marshmallows, candy bars used for oral dosing

### **Techniques**

- Blood collection
  - Auricular (Ear) veins (cath to Jug v.)
  - Cranial vena cava (R side avoids vagus)
  - External jugular (lies deep with int. jugular)
  - Lateral saphenous vein
  - Cephalic vein (fixed, so no rolling)
  - Brachiocephalic vein
  - Femoral vein (deep to artery)
  - Tail vein
  - Superficial Cranial Epigastric vein


    - Cranial abdominal veinMore prominent in cranial aspect of mammary chain



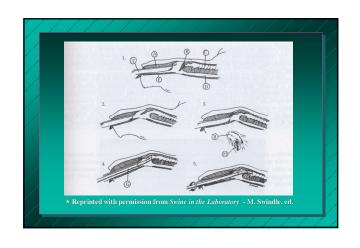




# Techniques Intramuscular injections Butterfly catheter Caudal thigh muscles Lateral neck muscles Lumbar muscles (small volume) Subcutaneous injections Neck area behind the ear, flank fold (for fluid therapy) Interosseous (IO) needle placement



# Induction/Restraint Sedatives Restraint, sedation, balanced anesthesia Medetomidine 20-80 ug/kg SC, IM, IV Dexmedetomidine (few refs – 10-20 ug/kg IM, IV) Atipamezole 0.1-0.2 mg/kg IM, IV Xylazine 1.0-2.0 mg/kg IM, IV Yohimbine 50-100 ug/kg IM, IV Diazepam 0.5-10 mg/kg IM or SC Midazolam 0.1-0.5 mg/kg IM, IV, IN Acepromazine 0.1-0.5 mg/kg IM


# Induction/Restraint Injectable anesthesia Ketamine 10-30 mg/kg Most reliable sedation with some analgesia Used with ace, xylazine, medetomidine, midazolam Ketamine 20-30 mg/kg with Ace 1.1 mg/kg Good muscle relaxation; used for short procedures and/or restraint Azaperone 2-4 mg/kg Stresnil, Suicalm Neuroleptic agent used primarily in UK and Europe



## Injectable Anesthesia Telazol 4.4 mg/kg with Ketamine 2.2 mg/kg and Xylazine 2.2 mg/kg Mix 250 mg each Ketamine and Xylazine added to 500 mg Telazol vial Total is 50 mg/ml ketamine, 50 mg/ml xylazine and 100 mg/ml telazol dosed at 1 ml/50 lbs IM Smaller volume used for larger pigs This is associated with CV depression and may not be suitable for CV studies



# Anesthesia Place laryngoscope blade at 45° angle to neck Free epiglottis from the soft palate Can use stylet with a 30° bend to help rotate/direct the tip after placement into proximal larynx Rotate tube as gently pushed forward avoiding the diverticulum





### Intravenous Agents Sodium Thiopental (6-30 mg/kg) Thiobarbiturates metabolized by kidney not liver Used for long-term anesthesia; flushed out of the system by intravenous fluids Thiopental can use as continuous infusion 3-30 mg/kg/hr IV Pentobarbital (20-40 mg/kg) Used for non-survival procedures but thiopental preferred. Propofol (0.8-1.6 mg/kg) Used primarily for anesthesia induction Can be used for long term sedation 14-20 mg/kg/hr Should not be used as sole agent - weak analgesic

## Inhalant Agents • Halothane • Was good anesthetic with good analgesia; production discontinued • Predisposes to MH and arrhythmias • Isoflurane (MAC 1.2%) • Best sole agent available • Piglets / small adults masked for induction • Sevoflurane (MAC 2.5%) • Ultrashort acting; used in some cases • Care taken regarding monitoring of anesthetic plane • Cost can be prohibitive • Nitrous Oxide • Swine resistant to analgesic effects, not used as sole agent • Occasionally used for second gas effect

# Anesthesia Monitoring - Palpebral / pupillary eye reflexes are not reliable indication of anesthesia depth - Better indication is jaw tone, response to pain (interdigital or ear pinch), spontaneous movement and increases in HR, RR - Monitor TPR minimum - 5-15 min intervals - Anesthesia record helps with adverse events

## Anesthesia Monitoring Cardiovascular 1. Pulse - brachial artery (medial aspect of humeroradial junction) - saphenous artery (medial aspect of distal femur) - sublingual artery 2. Pulse Oximetry - Probe placement can be on the tongue, tail, ear, lateral digit - placement may need to be adjusted during the case 3. ECG - tachycardia, PVC's, AV block, etc. 4. NIBP and IBP (central ear art,medial saphenous art)

## Anesthesia Monitoring Respiratory Function 1. Capnography - pigs produce large volume of moisture / heat - probes need to be monitored 2. Blood gases - central ear artery, medial saphenous artery 3. Auscultation Temperature 1. Minipigs especially prone to hypothermia 2. Cover with blankets 3. Circulating water blankets 4. Heated surgical tables 5. Bair Huggers (convection air) for extreme hypothermia 6. Heat lamps, drapes and blankets in pen post op

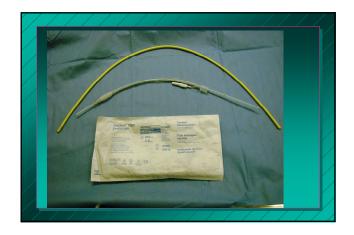
## Post Op Care Post-op pain determined by Incisional / Surgical site pain (guarding) Abnormal posture / behavior Rough hair coat Expression Lethargy or varied activity level Active if approached; observe at a distance Animals that are eating, drinking, normal behavior Analgesics may not be necessary (local / institutional pain score)

## Analgesics Local / Regional nerve blocks Marcaine Lidocaine NSAIDS Used for mild pain or as adjunct analgesia with opioids Used as pre-emptive analgesics Aspirin (10-20 mg/kg) (oral or suppository) Phenylbutazone (4-8 mg/kg) Tylenol (15 mg/kg suppository) Carprofen (2-4 mg/kg) Meloxicam (.4 mg/kg)

## Opioid Analgesics Relatively resistant to narcotic analgesics; short acting • Fentanyl (.02-.05 mg/kg) and Oxymorphone (0.15 mg/kg) • Last only a few hours • Fentanyl (30-50 ug/kg/hr) and Sufentanyl (10-15 ug/kg/hr) can be used as continuous infusion • Fentanyl patches (3-5 ug/kg/hr) • Can have varying results based on breed, age, location of patch, presence of moisture / heat and type of procedure. • Buprenorphine (0.01-0.1 mg/kg BID) / Butorphanol (0.1-0.3 mg/kg QID) • Analgesics of choice for most procedures • Lower doses of buprenorphine (0.005-0.01) used pre-emptively for adjunct analgesia

## Analgesics of Choice Buprenorphine pre-med 30-60 mins prior to surgery Continued q 8-12 hrs depending on procedure NSAID's given as adjunct analgesia evening of surgery Buprenorphine and / or NSAIDS continued for 24-72 hrs depending on procedures and pain assessment

## Anesthetic Complications A. Malignant Hyperthermia (MH) 1. Similar autosomal dominant metabolic disorder to man 2. Pietrain, Poland China, Landrace breeds 3. Occurrence related to blood groups H, A and 0 4. Porcine Calcium Channel mutation - Hal gene locus for mutation with 843 as nucleotide of single point mutation Hal 1843n – normal Hal 1843mm – monomutant / heterozygous (1 in 5 domestic pigs) Hal 1843dm – dimutant or homozygous (1% of domestic pigs) - Defect in Ca release mechanism results in continuous dumping of Ca causing prolonged muscle contractions.

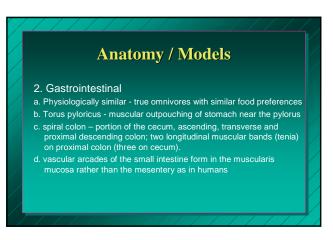

### 

# Anesthetic Complications B. Non malignant hyperthermia 1. Similar syndrome seen during post operative recovery 2. Symptoms occur after surgery rather than at induction 3. High temps (104-108 F); muscle tremors; fatal if left untreated 4. Treatment - adequate analgesia; Buprenex also produces hypothermia - sedation may help (acepromazine) - Tylenol suppository (10-15 mg/kg) - Alcohol baths, packing in ice, cold water bath - Dipyrone (20 mg/kg) IM in refractory cases – compounded by Wegdewood Pharmacy (www.wegdewoodpharmacy.com).

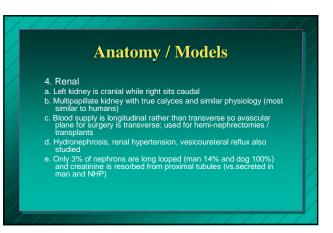
### Anesthetic Complications C. Cardiac arrhythmias 1. Fatal arrhythmias triggered by anesthetics (alpha-2 adrenergics) or cardiac manipulation (catheterizations, open heart procedures) 2. Minipigs thought to be not as susceptible as commercial swine 3. PVC's and V-fib seen during cardiac catheterization; can lead to asystole if not corrected 4. Atropine should be administered prior to induction to prevent bradycardia associated with vagal stimulation

## Anesthetic Complications C. Cardiac arrhythmias 5. If PVC's seen or as preemptive prior to cardiac surgery - Lidocaine (2-4 mg/kg) IV bolus then IV drip (30-50 ug/kg/hr) - Amiodarone (10-12 mg/kg then 0.05 mg/kg/hr IV) used in lieu of Bretylium 7. External defibrillation at 200-400 Ws 8. Asystole: - Epinepherine 1-3 cc's 1:1000 IV, IC, ET - Lateral chest compressions - Repeat atropine - NaHCO3 - Lidocaine, amiodarone

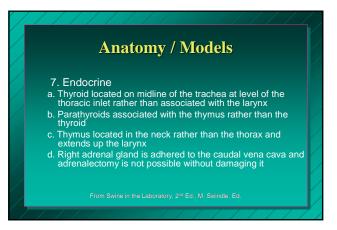



### Anatomy / Models 1. Cardiovascular a. Coronary blood supply, blood supply to conduction system, wound healing almost identical to humans b. Pigs and humans are "right" heart dominant - sinus node supplied by RCA rather than LCX (dog) c. Aorta - true vasa vasorum like humans and healing is similar d. Left azygous vein enters coronary sinus and drains the intercostals e. CO about the same as humans but pulmonary pressures higher f. Free-running Purkinje system invades myocardium more deeply g. Pigs tolerate mid-sternotomy due to high cartilage content is sternum




## Anatomy / Models h. Very little coronary collateralization but develops following myocardial infarction - dogs - significant collaterals, difficult to produce ischemia - ruminants - less collateralization, sparse collaterals after MI i. Models: - Atherosclerosis; plaque morphology similar to humans - coronary blood flow - Myocardial infarct / ischemia - cardiac transplant - vascular repair - cardiac pacemakers - hypertrophic cardiomyopathy






## Anatomy / Models 3. Pancreas a. Has 2 separate lobes with one retroperitoneal (same as man) b. Surgical dissection from duodenum possible because loose pancreaticoduodenal artery that serves as major blood supply c. Adhered to cranial mesenteric vein d. Single pancreatic duct enters distal and separate from bile duct e. Diabetes model produced by surgical and chemical means and pancreatic transplant -Yucatan – single IV dose of Alloxan induces acute diabetes



## Anatomy / Models 5. Skin a. Fixed skin has similar histological appearance and physiological function b. Used for wound healing, skin flaps and burn research 6. Liver (5 lobes) a. Gross anatomy similar to human but histologically more fibrous with septate appearance b. Bile duct is separate from the pancreatic duct c. Standard model for hepatic Tx



## Respiratory Diseases of Swine Mycoplasmosis hyopneumoniae Actinobacillus pleuropneumonia (APP) Swine Influenza (SI) Porcine Reproductive and Respiratory Syndrome (PRRS) Virus (PRRSV) Circovirus (PCV2) Pasteurellosis Verminous Pneumonia (Thumps)

# Respiratory Diseases of Swine Mycoplasmosis hyopneumoniae 1. Endemic in domestic herds (Enzootic Pneumonia – EP) 2. Severity varies with environmental factors / stress 3. Concurrent infections with Pasteurella, PRRS, SI 4. Chronic progressive pneumonia, non-productive cough - high morbidity, low mortality, few deaths in pigs 4-6 mos 5. Commercial vaccines, tetracycline, tylosin, lincomycin

## Respiratory Diseases of Swine - Actinobacillus pleuropneumonia (APP) (req's "x" factor - culture w/ S.aureus colonies (satelliting) or on chocolate agar 1.Widespread, severity, morb / mort varies w/ environment, stress 2. Usually triggered by PRRS or SI 3. Carried in tonsils / URT; trans by droplets; survives few day 4. Peracute - fever, anorexia, depression and death in 24 hours Acute - fever, depression, anorexia, severe resp. signs Chronic – low fever, cough, unthrifty, secondary bact inf's 5. Purulent bronchopneumonia with fibrinous pleurisy 6. TX: Ceftiofur (Exceed), Florfenicol (Nuflor), tulathromycin (Draxxin), commercial vaccines available

## Respiratory Diseases of Swine Swine Influenza (SI) Type A influenza virus – zoonotic Most common strains H1N1, H1N2 and H3N2 Associated w/ shipping; seen in late fall / early winter Carrier state common; rapid onset, high morbidity. low mortality Lethargy, fever, dyspnea, coughing, anorexia; recovery in days Infections (APP, EP, PRRS, Past) occur so antibiotics initiated. Lobar atelectasis, bronchitis, alveolar necrosis, interstitial pneumonia Tx: supportive, vaccinate, Ceftiofur Prevention: H1N1/H3N2 vaccine available (MaxiVac Excell3)

### **Respiratory Diseases of Swine** Porcine Reproductive and Respiratory Syndrome (PRRS) Virus (PRRSV)

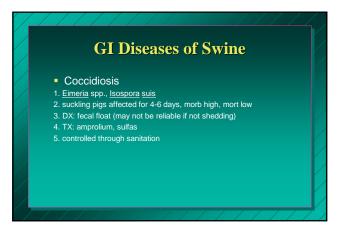
- 1. First seen in US -1987 ; Europe 1990
- 2. Single-stranded RNA virus of the Arteriviridae Family
- 3. Transmission direct contact, aerosolization (2 miles); AI
- Virus isolated in urine, nasal and rectal swabs and semen.
- 5. Replicates in alveolar macrophages
- 6. Inappetence / resp distress affecting all ages, cyanotic ears
- 7. High mortality in neonatal / weaned pigs
- 8. Poor conception rates, increased abortions, stillborns
- 7. Vaccines available; prevent clinical disease in an outbreak or protect PRRS neg animals introduced into PRRS pos herds

### **Respiratory Diseases of Swine**

- Circovirus (PCV2)
- 1. PMWS Postweaning multisystemic wasting syndrome
- 1. PMWS Postweaning multisystemic wasting syndrome PDNS Porcine dermatitis and nephropathy syndrome PRDC Porcine respiratory disease complex

  2. 1974 PCV1 identified as non-disease causing agent 1991 nursery pigs loss of body condition, enlarged lymph nodes, difficulty breathing, diarrhea, pale skin, and jaundice (PMWS) 1997 PCV2 isolated from these outbreaks, PMWS now worldwide 3. PCV2 small, non-enveloped, circular DNA virus only affecting pigs.
- PCV2 is stable, resistant to common disinfectants.
- 5. Macrophages lung, tonsil, spleen, lymph nodes contain virus 6. Infection results in the lymphocytes depletion (tonsils, lymph nodes).

### **Respiratory Diseases of Swine** Circovirus (PCV2) 7. Majority of farms PCV2 seropositive but few show signs of disease 8. Co-infection with <u>PCV2 and PRRS result in severe form of PMWS</u> 9. Porcine dermatitis and nephropathy syndrome (PDNS). - Pigs allert, non-revenish - Dime-sized, ulcerative, raised lesions on skin - flank, rear legs, and belly - May be fatal or spontaneously recover w/o treatment - Kidneys enlarged, pale w/ pinpoint hemorrhages on surface 10. In U.S., PCV2 causes Porcine respiratory disease complex (PRDC) 11. Co-infections w/ P, multocida, SI, PRRS virus, or M, hyopneumoniae


result in prolonged, severe respiratory disease outbreaks.
12. <u>Vaccines: Suvaxyn PCV2</u> (Fort Dodge) and Ingelvac CircoFLEX (Boehringe

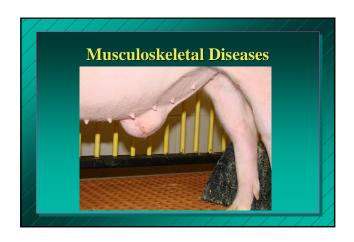
### **Respiratory Diseases of Swine Pasteurellosis** 1. P. multocida common with M. hyopneumonia, PRRS and APP 2. Bronchopneumonia, pericarditis, pleuritis, fibrinous pneumonia 3. Causes atrophic rhinitis with B. bronchisepticum Verminous Pneumonia (Thumps) 1. Migrating larvae of Ascaris suum, 2. Metastrongylus elongatus (lungworms) - large white parasites, adults in the bronchi and bronchioles

### **GI Diseases of Swine** Transmissible gastroenteritis (TGE) 1. Coronavirus; Starlings may be a mechanical vector 2. Epizootic - high morb / mort in suckling pigs w/ anorexia, vomiting, 3. Enzootic - persistent infection due to addition of susceptible pigs; signs milder, less mortality due to maternal antibody protection 4. Gastric and SI distension w/gas, fluid; villous atrophy

### **GI** Diseases of Swine Colibacillosis 1. <u>E. coli</u> strains K88, K99, 987P 2. K88 attachment to mucosal cells; causes neonatal disease; produces 2 enterotoxins (heat labile and heat stabile) 3. neonatal colibacillosis - entertoxic hypersecretory diarrhea; watery diarrhea in first 3 weeks, dehydration and death;

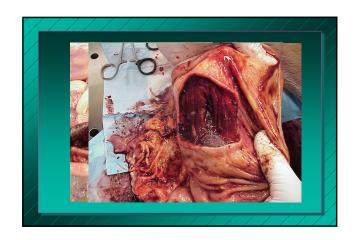
# GI Diseases of Swine Rotavirus 1. common infection, present in most herds 2. severity related to immune status, other infections (E. coli, TGE) 3. "white scours" in 1-8 week old pigs; usually mild and self-limiting; 4. TX: supportive, self-limiting




## GI Diseases of Swine Swine Dysentery Berachyspira (Serpulina) hyodysenteriae Weanling pigs (8-14 weeks) high morb, low mort Mucohemorrhagic diarrhea, fever, dehydration, acidosis, electrolyte imbalances, death; asymptomatic carriers possible DDX: E.coll hemorrhagic enteritis seen in young pigs vs. swine dysentery seen in weanlings






## Musculoskeletal Diseases Hemophilus parasuis (Glasser's Disease) Acute to peracute onset Fever, lethargy, anorexia, peripheral cyanosis Dyspnea, friction rubs, "dog sitting" Painful joints, carpus / tarsus most common Pleuritis, pericarditis, peritonitis, fibrinopurulent serositis and arthritis, meningoencephalitis Mycoplasma hyosynoviae Organism in nasopharynx; Asymptomatic Acute septicemia may resolve but persist in joint spaces Non-suppurative polyarthritis, w/o fever Piglets most susc.; acutely lame 3-10 days; chronic lameness variable

# Musculoskeletal Diseases • Erysipelothrix rhusiopathia (Erysipelas) - Isolated from healthy pig spleen, tonsils, gallbladder, GIT - Carrier pigs are reservoir and pasture / pen soil can harbor organism for weeks - Acute septicemia in suckling pigs with sudden death - Fever, arthritis, skin discoloration (diamond-skin lesions) erythema, purple discoloration of the ears - Tips of ears, tail may become necrotic and slough - Can develop chronic arthritis / vegetative valvular endocarditis



### **Miscellaneous Diseases**

- Gastric Ulcers (pars oesophagea)
- Gastric secretion / acidity affected by vagal stimulation
- Acts on parietal cells (inc. gastrin / dec pH) and adrenal (inc. epinephrine secretion w/ indirect mucosal effect)
- Stress, bact. infection, parasites, diet (pelleted, finely ground feed)
- All breeds, ages and both sexes affected
- Peracute found dead after massive intragastric hemorrhage Acute - pallor, anemia, weakness, melena, tachypnea Chronic- microcytic anemia, anorexia, melena, wt. loss
- e. Fluids, blood, calcium (helps clotting / depresses gastric secretions); Cimetadine (Tagamet), Famotdine (Pepcid), Sucralfate (Carafate)



### **Miscellaneous Diseases**

- Vitamin E Deficiency
- Mulberry Heart Disease and Hepatosis Dietetica
- Caused by Vitamin E and Se deficiency
- Distended pericardial sac with straw-colored fluid and fibrin
- Hemorrhage throughout myocardium, necrosis and fibrin thrombi in the capillaries
- SQ edema with transudate in thorax and abdomen; fibrin strands adhere to the liver, which has diffuse irregular foci of necrosis and hemorrhage

### **Miscellaneous Diseases**

- Salt Poisoning
- Water deprived pigs or salt toxicity
- Inc. thirst, pruritus, ataxia, head pressing, seizures
- Circulating eosinophils migrate to cerebrovascular / meninges collecting around vessels in 48 hrs
- Na ions accumulate in brain tissues; when water is available, migration of water to tissues with high Na concentrations
- Cerebral edema, increased intracranial pressure, eosinophilic meningoencephalitis



